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1. INTRODUCTION

Suppose we are given a finite sequence x,..., x of numbers in the unit
interval [0, 1] and a finite sequence p,,..., py of nonnegative numbers such
that

N
Z p.=1

k=1

We call the numbers p,,.., py weights of the numbers x,,..., x», respec-
tively. Further, let

k
a,=0 and =Y p. k=1,., N

i=1

We shall consider in this paper quadrature formulae of the type

[ 10 ax= i Al )+ R (11)

where the function f is r-times differentiable on [0, 1] and the coefficients
A, are given by

(ak_xk)j+1-(ak71_xk)j+l
A= - "
(j+ 1)

Quadrature formulae of the type (1.1) have been studied in [1-4] and
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similar ones have been studied in [ 5]. It is easy to see that if r =0, then the
quadrature formula (1.1) can be written in the form

cl

|, fx)dx= 3 pifo) + REG )

k=1

Consequently, (1.1) is a generalization of the general quadrature process
with positive weights.

We shall also investigade in our paper approximation of r-times differen-
tiable functions on [0, 1] by means of functions L{’(f;x) which are
defined on [0, 1] by

o ) o
L/v(fQX):Z E (x—x,)’ if xela,_,,a), 1<k<N. (1.2)
j=0 J

(We shall assume in what follows that [a, b)=[a, b if b=1.)

In the present paper, we obtain some new upper bounds for the error of
the quadrature formulae of the type (1.1} and for the error of the
approximation of differentiable functions by means of functions of the type
{1.2). Our results improve or generalize almost all results which have been
obtained in [1-4, 6]. The main results of the paper have been announced
in [7].

2. NOTATION AND DEFINITIONS

For a sequence x,,..., xy in [0, 1] with a weight sequence p,,... py, we
define the functions g and 4 on [0, 1] by

glx)=x— 3% p
l<k<N
g <X
and
h{x)=|x— x| if xelae_,a), l<k<N

Then the number

Dy=lgllec= sup [g(x)|

O0<x<l

18 said to be the {(extreme) discrepancy of x,,.., x, with respect to the
weights p,..., py. Further, the number

1 1ip
D%”=HgHL,,:(fOIg(x)l”dx> » O<p<on,
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is called the L’ discrepancy of x,.., x, with respect to the weights
D1 Py It is easy to see that if p,=p,= - =py=1/N, then D, and
D'p) are equal to the extreme and L7 discrepancies of x,,..., x v, respectively
(see, e.g., [8, pp. 90, 971]).

As a measure of the distribution of x,,..., x, with respect to the weights
D1y Pa» €Xxcept the discrepancies Dy and D{, we also use the number

aip=([ 1o+ dx)/(jo' |g(x>1"dx), 0<p<on.

Obviously, 49 = D{.
As a characteristic of a function f defined on [0, 1], we use its modulus
of continuity

o(f;8)=sup{|f(x")— f(x")]: |x'—x"| <4, x', y'€ [0, 1]}
or its modulus of smoothess
W(fi0),=lo(f; x50, O<p<oo,

where
o(f; x;0)=sup{{(x")—f(x"): x, x" e [x—6/2, x+ /2]~ [0, 1]}.

For the history of modulus t(f;J),, and its properties see [9].
Let us recall that a continuous function w(é) defined on [0, + o0} is
called a modulus of continuity if w(0)=0 and

0<w(d,)— o) <o, —6,) for 0<8,<35,. (2.1)

Now, we shall introduce some classes of functions. Let C, B, and M denote
the set of all continuous functions on [0, 1], the set of all bounded
functions on [0, 1], and the set of all bounded and measurable functions
on [0, 1], respectively. Further, for a modulus of continuity w(d), we
denote by H® the set of all functions f for which the inequality

o(f; )< w(9)
holds for every d e [0, +o0). If
w(d) = Co%,

where 0 <a < 1 and C is an absolute constant, we shall write H,(C) instead
of H®. Finally, for a natural r (re N) we put

W= {f: e},

640,50/4-6
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where 9 is an arbitrary set of functions which are defined on [0, 1]. We
also put WM =M.

3. AUXILIARY LEMMAS
We need the following lemmas.

LemMma 1. The discrepancies Dy, D\, and A\ are related by the
inequality

Dy *V<dP <Dy  for 0<p<oo. (3.1)

Proof. The second inequality in (3.1) is obvious. It is easy to show that
the first inequality in (3.1) 1s equivalent to the inequality

gl <lgl.,,,

which holds for every p>0. The lemma is proved.

LEMMA 2 (Proinov [6]). Let x,< - <xy. Then for 0 < p< o0, we
have

Dy =i,
and

Dy=|hllc= max max{|x,—a, |, |x,—al}.
1<k N

SLES

LEMMA 3 (see, e.g., [10, Sect. 2, Problem 75]). Let f(x) and p(x) be
Riemann integrable functions on [a, b) such that

Jh p(x)dx>0

and inequalities
m< f(x)sM and p(x)=0

hold for every xe[a, b], where m and M are absolute constants. Then if
@(x) is a concave function on [m, M], we have

Jo p(x) o(f(x)) dx _ (IZ p(X)f(X)dX>
§5 p(x) dx §op(xyds )
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LemMa 4. Let h be a function defined on [0, 1] by
h(x)=c,+Clx—x;] if xelac_1,a,), 1<k <N, (3.2)
where the numbers c,..., ¢ are given by
¢, =0, Cri1=Cet+Cla,—x| —Clay— x4 41l k=1,.,N, (3.3)
and C is an absolute constant. Then
FeH,(C).
Proof. Since a, € [ay, a,, ), it follows from (3.2) and (3.3) that
hagy=cpo1+Cla,— x4, | =co+Cla, —x,.

Therefore,

E(X)ZC,(-i-Clx—ku U(‘ xe[ak,,,ak],ISkSN. (34)

Let x', x" € [a,_,, a,), where 1 <k <N. Then from (3.4), we deduce
[(x )= h(x") = C | |x' = x| — [x" = x,] |
SCNHX —x )= (X" —x )] C |x"— x"|. (3.5)
Now let x'€[a;_,a,) and x"€[a,_,,a,), where 1 <i<j<N. Then from
(3.5), we get
|A(x") = h(x")|
= |[A(x") — h(a)] + [A(a,) = h(a,, )1+ -+ + [Ala,_ ) = K(x")]
<C(Ix'—al+la;—a; 4|+ + la; 1 —x"[)
:xll_x/=|xl_x!/ .
Consequently,

w(h, §)< Cs

for § = 0. This completes the proof of the lemma.

COROLLARY 1. Let the sequences x,,..., Xy and p,,..., py be related by

Xt Xy

a == k=1L, (3.6)



378 PETKO D. PROINOV

Then
he H,(1).
Proof. 1f (3.6) holds, then from (3.3) it follows that

Therefore,

with C= 1. Now Corollary 1 follows from Lemma 4.

LEMMA 5. Suppose (3.6) holds and we are given a function w(d) defined
on [0, 1] which satisfies (2.1). Put

Sf(x)=w(h(x))
for xe [0, 1]. Then
(f;0)=w(3) for 0<3< Dy,
=w(Dy)  for 62Dy,

Proof. Let 6=0. We proved in Corollary | that he H,(C). Hence, it
follows from (2.1) that

S () = f(x")] = o(A(x")) — o(h(x"))|
So(li(x)—rx M <oy’ —x")<w(0)  (3.7)

for all x', x"e [0, 1] with |x"—x"] <d. Suppose first that 0<o<D,. It
follows from Lemma 2 that there exists an integer k (1 <k < N) such that
either Dy=x,—a, or Dy=a, —x,. We treat only the second alternative,
the firts one being completely similar. Choose x' = x, and x" = x, + o. Since
ap (<x, <x,+0< x,+ Dy=a,, it follows that x', x" e [a,_,, a,]. Now
by the definition of 4, we obtain

LA(x") = f(x")] = (). (3.8)
From (3.7) and (3.8), we conclude that
w(f;0)=w(d) for 0<O<Dy. (3.9)
Now let = Dy. Then from (3.9) and Lemma 2, we have

o(Dy)=a(f; Dy)<o(f;8)<|[lle=aol(l gllc)=w(Dy),
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which means that
w(f;0)=w(Dy) for 6z=D,.

Lemma 5 is proved.
The following lemma belongs to S. B. Steckin.

LEMMA 6 (see, e.g., [11, p. 182]). For every modulus of continuity w(9d)
there exists a concave modulus of continuity w*(d) such that

w(d) < w*(0) < 2w(d) for 6=0.

4. APPROXIMATION OF FUNCTIONS

Now we are ready to give some new upper bounds for the error of the
approximation of r-times differentiable functions by means of functions of
the type (1.2). We shall suppose in what follows that

X <X, € K xy (4.1)

THEOREM 1. Let reN, 0 < p<oo. Then for every function fe W'B, we
have

OV [ (1—xy ol x Dy v (@2)

=LY, <

Proof. Using Taylor’s formula with the remainder in integral form it
can be proved [1] that for xe [a,_,, a,), 1 <k <N, we have

Jx) = LE(S 5 x)

f,_);k) f (=0 'O+ (x=x,)0) = f (xS dr. (43)

Therefore,

=LY,
=<§ [ If(x)~L<N”(f;x)|ﬂdx>W
k

=1 k-1

1 Noora
:(r—l)!<sz be = x,] 7

1 Vak—1

x Ll(1—z)’*‘[f(”(xk—i-(x—xk)t)—_f")(xk)]dt pdx>l/p. (4.4)
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From (4.4), we obtain the estimate

1 =L,

x<f01(1_ 0 (0 |x — x,] z)dz)ldx>w

: (jl h(x)?" (f (1= 1)~ 'o(f" th(x)) dt)p dx)w. (4.5)

=\,

From Lemma 2, it follows that for all x, 1€ [0, 1],
o(f75 th(x)) < o(f 5k ) =o(f 7 1 Dy).

Hence, we get from (4.5),
LY <—1——<j' hx)” dx)”pj' (L 1) (51 Dy) di
e AT TR O 0 N

From this and Lemma 2, we obtain (4.2). The theorem is proved.
Passing to the limit as p —» oo in the inequality (4.2) we obtain the
following

COROLLARY 2 (Proinov and Kirov [37]). Let reN. Then for every
Sfunction fe W'B, we have

= LU e S 2y, 000 oy 75 Dy e

The next theorem complements Theorem 1.

THEOREM 2. Let reN and O0< p<1. Then for every function fe W'B
such that its rth derivative ') has concave modulus of continuity, we have

DE ' (1 o x Ay dx. (46)

I = LR, <,

Moreover, if p=1 then the estimate (4.6) cannot be improved in the sense
that there exists a function (satisfying the requirement of the theorem) for
which the inequality (4.6) changes into equality.
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Proof. Let fe W'B and w(8)=w(f");d) be a concave function on
[0, 17. It is easy to prove that the function

tﬁ(x)=fl (1= 1) 'w(tx) dt

is also concave on [0, 1]; that is, the inequality

Wy, <x-;x)

holds for ail x’,x"e[0,1]. On the other hand, the function y=x?
(0 < p<1)is concave and increasing on [0, + o0). Therefore, the function

o(x)=y(x)”

is concave on [0, 1]. Obviously, (4.5) can be written in the form

1 l/p
If =LY Lp<(7_1—, () h(x)"'zp(h(x))a’x) : (47)

1B}
Applying Lemma 3 with p(x)=h(x)?" we get

AN e (ThT ey
mivara <0 (igra )~ o

From this and Lemma 2, we obtain

1
[ k) o(hx)) dx < (DY) (aipr)
0
1 P
=<D(NP”'( (1—t)"1w(f"’;tA‘,5”))dt> (4.8)
0
The estimate (4.6) follows from (4.7) and (4.8).

Now let p=1. We shall prove that the estimate (4.6) cannot be
improved in this case. Let 7 be a function defined on [0, 1] by

T(x)=Cx, (4.9)
where C is an absolute constant. Evidently,
w(f7; 8)=Cé. (4.10)

Therefore, fe W H (C)= W’B and w(8)=w(f"; §) is a concave function
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on [0, 17]; that is, 7 satisfies the requirement of the theorem. From (4.4).
(4.10), and Lemma 2, we get

(‘ N ag
(r) o X — r+ 1
17— L9, i L el
C |
— h 3 r+1
TENT] L (x)" " dx
(DY)

i
r— 1) L (1=x)" o (F7 x 4) dx.

Consequently, if p=1 then for f the inequality (4.6) changes into equality.
Thus Theorem 2 is proved.
The next theorem can be proved by using the same method of proof.

THEOREM 2'. Let reN, 0< p<1, and w(0) be a concave modulus of
continuity. Then

(1—x) (x4 dx.  (4.11)

sup | f— L(]\;)(f)” < (D(Npr))r jl
r

fe WTH® ( _1)! 0

Besides, the inequality (4.11) changes into equality if p=1 and w(d)= C9,
where C is an absolute constant.

THEOREM 3. For every function f € C whose modulus of continuity is a
concave function on [0, 1], we have

Lf = LY L < o(f; DY) (4.12)
Moreover, the estimate (4.12) cannot be improved.

Proof. Tt is obvious that

N

/=L =Y [ 10— fx) a (4.13)

k=1 "% -1

Consequently,
1
If = LWL S| ot/ hx)) d
Now, applying Lemma 3 with ¢(x)=w(/f; x) and p(x)=1 we obtain

1= LU <o (£ ] A ax) =t D)
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Further, let f be a function defined on [0, 1], by
J(x)=Cx, (4.14)
where C is an absolute constant. From (4.12), (4.14), and Lemma 2, we get

= L9 =C 3 [ le—xil dx

k=1 "4dk-1

- cj h(x) dx = o(F; D).
0

This equality shows that the estimate (4.12) cannot be improved.
Theorem 3 is established.
The next theorem follows similarly.

THEOREM 3. Let w(d) be a concave modulus of continuity. Then

sup [/ = L) S o(Dy). (4.15)

fe HY

Besides, the inequality (4.15) changes into equality if w(d)= Cd, where C is
an absolute constant.

We shail denote in what follows by I'(x) and B(x, y) the gamma
function and the beta function, respectively, that is,

F(x)=f+w e 't dt and B(x y)ZJ‘I t"71(1 __t)y71 dt
’ 0 ’ o .

THEOREM 4. Let reNy=NuU {0}, 0<p< o0 and 0<a<1. Then

sup 1/~ LY, < € et )

————— (D POyt (4.16)
fe WHL(C) I'la+r+ 1) N

Moreover, the inequality (4.16) changes into equality if either a =1 or (3.6)
holds.

Proof. Let reN and fe W H_(C). Since
w(f7; 8)< C8°,

it follows from (4.5) that

l/p
ILf— L">(f)||Lp Ba+1,r) <j h(x)?r+re dx) . (417)

C
(r=1)!
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From this and Lemma 2, we get

C
= LN ST
(r=

T Bl LDy iy 4as)

From (4.18) using the well-known equality

and taking into account that
I(r)=(r—1)
we obtain
e LU < C—FTI;(i—ti)l—) (Dl ey

Hence, (4.16) holds for re N. Suppose that r =0 and f e H,(C). Obviously,
we have

nf'—uN‘»(f>||Lﬁ=<z [ |f(X)—f(xk)|”dx> @)

k=1 Yak-1
Since w( f;0) < €9, it follows from (4.19) and Lemma 2 that

N

> [

k=1 "1

1~ L9, < C( X x| 7 dx)”"

i 1/
=C (j h(x)? dx) = C(DY)
0

From this, we get (4.16) for r =0.

Now let = 1. Let us consider again the function 7 defined on [0, 1] by
(4.9). From (4.10), 1t follows that fe W"H,(C). If re N, then from (4.4)
and Lemma 2, we obtain

Lf =LY, = (D{prmy e, (4.20)

(r+ 1)
If =0, then from (4.19) and Lemma 2, we obtain
1= LD, = CDY.

Hence, (4.20) holds for every re N, ; that is, (4.16) changes into equality if
a=1.
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Finally, suppose that 0 <a<1 and (3.6) holds. Let / be a function
defined on [0, 1] by
F(x) = Ch(x)?, (4.21)
where C is an absolute constant. Then, it follows from Lemma 5 that
o(f7;0)=Cs* for 0<3<D,,

‘ (4.22)
=CD5 for 6=D,.

Therefore, fe W H,(C). If re N, then from (4.4) and Lemma 2, we get

Ie+1)

IS =LY, = Cm

(Dipr -y +=, (4.23)

If =0, then from (4.19), we get
If = LU L, = (D)™

Hence, (4.22) holds for every re N,. This means that (4.16) changes into
equality if (3.6) holds. The theorem is proved.
Passing to the limit as p — oo in (4.16) we obtain the following

CorOLLARY 3. Let reNg and 0 <a< 1. Then

[a+1)
su — L <C——r—"—(Dy) = 4.24
s LR € (D) (424)

Moveover, the inequality (4.24) changes into equality if either o =1 or (3.6)
holds.

THEOREM 5. Let reN and 0 < p < oo. Then for every function fe WM
and for all positive numbers g and s with 1/q+ 1/s=1/p, we have

(DY
r!

If = LY, <

(f' ZDN)LV. (4.25)
Proof. For all x,ze[0, 1], we have
|x — (X + (x = x)2)| =[x — x| [T = 2] S |x = X, ],

where 1 <k < N. Therefore

[ £ e+ (x—x0)2) — fOx )] S o(f 7 x:2 |x — x,)).
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From this and (4.4) we get

1

{1 L'p
I/ = LSO, < ( | h(x)7 (S x; 2h(x)) dx) (4.26)
ANV

for re N. From (4.19), it follows that {4.26) holds for r=0 as well. Let us
choose p=s/p and g=gq/p. Then 1/p+1/G=1. Now using Hoélder’s
inequality for integrals and Lemma 2 we deduce

~1

J h(x)" (£ x; 2h(x)) " dx

0

< (Jl h{x)*" dx> ! (Jl (£ x; 2h(x))# dx) !
4] 0

_ (Ll h(x)” dx>[

1 rq
<o) ([ o720, ix)
0

s

( j (7 x: 2h(x)) dx)m
0

= LD (752D ,),,]"
From this and (4.26), we get {4.25). Theorem 5 is proved.
Passing to the limit as s — o¢ in (4.25) we obtain the following
COROLLARY 4 (Proinov and Kirov [3]). Ler reN and 0< p< 0.

Then for every function fe WM, we have

(Dw)

r!

Lf = L., < (/5 2Dy),,.

S. NUMERICAL INTEGRATION

Now using the above results we shall give some new upper bounds for
the error of the quadrature formulae of the type (1.1).

THEOREM 6. Let re N. Then for every function f e W'B, we have

WD) " (1 =y~ (/" x Dy di: (1)

IR <m .
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Proof. 1t is easy to check that for re N the error of the quadrature for-
mula (1.1) can be written in the form

RO =[ (f0x) = LS x)) . (52)
Consequently,
IR < IS = LP L (53)
Now (5.1) follows from Theorem 1 and (5.3). The theorem is proved.

Remark 1. It follows from Lemmal that Theorem 6 improves
Theorem 4 of [3] and Theorem 3 of [4].
In [12] we proved that for every fe C

IRV S o(f; Dy). (5.4)
It should be noted that this estimate was first proved by H. Niederreiter
[13], for the case p,=p,= - =py=1/N.

From Theorem 6 and (5.4), we get the following

COROLLARY 5. Let re N. Then for every function fe W'C, we have

(DR

IRV < w(f"; D). (53)

Remark 2. For re N the estimate (5.5) improves Corollary 4 of [3] and
Corollary 3 of [2].

THEOREM 7. Let re N. Then for every function f e W’'B such that its rth
derivative ") has concave modulus of continuity, we have

(DY) [ (1—

ROV < Gy

o(f";x 49)d (5.6)

Moreover, the estimate (5.6) cannot be improved if either r is an odd integer
or r is an even integer and (3.6) holds.

Proof. The estimate (5.6) follows from Theorem 2 and (5.3). Now we
shall prove that this estimate is exact. From (5.2) and (4.3), we obtain

1 N

Z f"k (x—x)

(r—l)! k=1"ak—1

RO() =

x (fl (1= o) LS+ (x—x00) — £ O0xe) ] dt) .. (57)

640,50/4-7



388 PETKO D. PROINOV

Suppose that r is an odd integer. Let us consider again the function [
defined on [0, 1] by (4.9). From (5.7) and Lemma 2, we get

N ey
RY) 7)— }: J A (x—x,) " dx
= (27
C N gy o
-(erl)!,;,:lJaA l“hm x
C
- h r+ld
BCEE] f ey ™ dx

rye
- ((rD _(Nl))! J (1=x) (] x 4%) dx.

Hence, in this case the estimate (5.6) cannot be improved.
Now suppose that r is an even integer and (3.6) holds. Let us define the
function f on [0, 1] by

S7(x)= Chix), (5.8)
where C is an absolute constant. From Lemma 35, it follows that
w(f";8)=Cd for 0<é6<D,,
71:6) ‘ . 59)
=CDy for 0=D,.

Therefore, fe W H,(C)c W'B and w(d)=w(f""; ) is a concave function.
Since for every € [0, 1], we have

014 <D,
it follows from (5.9) that
(S5 140y =14

Hence, from (5.7) and Lemma 2, we have

RY(]) = z [ = b= xl ax
— 1 Yak -
C AN +1
= X—X " d’C
(r+1) Z f‘ 4
C

- jo h(x) 1 dx

(DY)

( ~ 1) J (1—x) 'o(f"; x4%)) dx.
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Consequently, in this case the estimate (5.6) cannot be improved either.
Thus Theorem 7 is proved.

THEOREM 7. Let re N and w(8) be a concave modulus of continuity.
Then

(DY) ! i
sup [RY(f)] < j (1—x) " 'w(xAY) dx. (5.10)
fe WTH™ (r— l)' 0

Besides, the inequality (5.10) changes into equality if ()= Cé, where C is
an absolute constant.

Proof. The estimate (5.10) follows from (5.3) and Theorem 2’. Now
suppose that w(d)= Cé, where C is an absolute constant. To prove the
exactness of (5.10) we consider two cases. First, let r be an odd integer. Let
us consider again the function f defined on [0, 1] by (4.9). Obviously

FeWH,(C)=WH"

From (5.7) and Lemma 2, we obtain

N
R(’)]) r+1dx
L
N
f 'ZJ |x —x,|"* " dx
C r+1

) " lo(xA4W) dx.

Hence, in this case the inequality (5.10) changes into equality. .
Now let r be an even integer. Then let us define the function f on [0, 1]
by

F700) = h(x).

From Lemma 4, it follows that

fe W H,(C)=WH".

From (5.7) and Lemma 2, we have
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(" N

RYN([) = Z X)) |x—x,| dx
(r+1 J yrdx
r_l)j (1= x)Y 'o(x4Y) dx.

Therefore, is this case the inequality (5.10) changes into equality too. The
corollary is proved.

Remark 3. Let reN. From Lemma 1, it follows that
D()\r/+ 1) < A%).

But it should be noted that DY * "’ cannot be placed in Theorems 7 and 7’
instead of 44
The next theorem complements the estimate (5.4).

THEOREM 8. For every function [ € C whose modulus of continuity is a
concave function, we have

IRV <o(f; DY), (5.11)

Moreover, the estimate (5.11) cannot be improved if (3.6) holds.

Proof. From (5.3) and Theorem 3, we get (5.11). Suppose that (3.6)
holds. Then let us define the function f on [0, 1] by

f(x)= Ch(x).
From Lemma 5, we have
w(f;0)=Cd for 0<0< Dy,
=CDy for 6= D,.
Therefore, fe H(C)=C and w(d)=w(/;8) is a concave function. Since
0< DV < Dy, it follows that
w(f; DY) = CDY. (5.12)

From (5.2), (5.12), and Lemma 2, we obtain
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RO(N=Y [* /00— Fx)] dx
—CZ[ x— xkfdx_cf
=aw(f; DY)

Thus Theorem 8 is proved.
From Theorems 7 and 8, we obtain the following

COROLLARY 6. Let re Ng. Then for every function fe WC such that its
rth derivative f'"' has a concave modulus of continuity, we have

(DY) (”)’

IRV < w(f"; 49).

Using Lemma 6 from Corollary 6 we get the following

CorOLLARY 7. Let re Ng. Then for every function fe W'C, we have

DOy
R <2 P o7 a9,

Remark 4. This estimate for r =0 has been proved in [4].

THEOREM 8'. We have

sup [RP(/) < w(DR)). (5.13)

feH®

Besides, the inequality (5.13) changes into equality if w(d)= CS, where C is
an absolute constant.

Proof. The estimate (5.13) follows from (5.13) and Theorem 3'. Let
w(8) = Co. Then we have from (5.2) and Lemma 2,

RP(R) = | TR0 —F(x)1ds

_czf Ix — xk|dx_cf h(x) dx

=1 k-1

= w(k; DY),

which means that (5.13) changes into equality in this case.
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THEOREM 9. Let re Ny and 0 <a < 1. Then

: Ta+1)
su RV C——c—"= (D Yy~ 5.14
L sup RS C et (D) (5.14)
Moreover, the inequality (5.14) changes into equality if either x =1 or r is an
even integer and (3.6) holds.

Proof. The estimate (5.14) follows from (5.3) and Theorem 4. If a =1,
then the exactness of Theorem 9 can be proved as the exactness of
Theorems 7" and 8'. Now let r be an even integer and (3.6) holds. Let us
define the function [ on [0, 1] by (4.21). Then

SeW HLC).

From (5.7) and Lemma 2, we get for re N,

o B+l & e
R =C——_ " 7 X—xX ) |Ix—x.0*d
= C=mim L e v
e fet) $ope rha gy
_Cr(oc+r+1)kZ::,LA ]‘Y_H dx
AR Mo+ 1)
= —— h gy =C —— DU +xyrtx )
Flatra 17y 100 o= C gy (PR (519)

If r=0, then from (5.2) and Lemma 2 we obtain

RO(f)=C Z J |x — x| dx = C(D@)". (5.16)
k=1 4 1
From {5.15) and (5.16) we conclude that in this case the inequality (5.14)
changes into equality as well. Theorem 9 is proved.

Remark 5. Theorem 9 in the case r=0 and a=1 has been proved in
{14] (see p. 65, Theorem 1”). In the case r=0 and 0 <a < 1, it has been
proved in [6].

THeOREM 10. Let reNg. Then for all positive numbers p and q with
I/p+ 1/qg=1 and for every function '€ WM, we have

(D(pr))r

IR/ <2 Le(f0;2D ), (5.17)

Proof. The estimate (5.17) follows from (5.3) and Theorem 5. Passing
to the limit as p — oc in (5.17) we obtain the following
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COROLLARY 8. Let reNgy. Then for every function f€ WM, we have

(D)

al

IRQ(S) <

T(f(r); 2Dy), -

Remark 6. This estimate for r =0 has been proved in [15]. For re N it

has been proved in [2, 3].
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